Nuclear Physics and Atomic Energy


Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2017, volume 18, issue 3, pages 215-221.
Section: Nuclear Physics.
Received: 17.05.2017; Accepted: 12.10.2017; Published online: 28.12.2017.
PDF Full text (ru)
https://doi.org/

Calculation of the atomic states energies in the Thomas - Fermi approximation

S. N. Fedotkin*

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: sfedot@kinr.kiev.ua

Abstract: A method for calculating the energies of levels for many-electron neutral atoms is proposed. In this case, in addition to the Coulomb field of the nucleus, an important contribution to the energy is connected with the interaction between the electrons. This interaction is taken into account approximately by perturbation theory in the framework of the Thomas - Fermi statistical model. Using the Taytz approximation for the mean potential the analytical expressions for the energies of s-states are obtained with principal quantum numbers n = 1, 2, 3, 4. The energies are calculated for the nuclear charges in the interval 1 < Z ≤ 100. A good agreement with the experimental values of the energies was obtained.

Keywords: energies of atomic levels, Thomas - Fermi model, perturbation theory.

References:

1. H.A. Bethe, E.E. Salpeter. Quantum Mechanics of One- and Two-electron Atom (Berlin-Gottingen-Heidelberg: Springer-Verlag, 1957) 562 p. https://doi.org/10.1007/978-1-4613-4104-8

2. C.F. Fischer. The Hartree-Fock Method for Atoms (N.Y., London: John Wiley & Sons, 1977) 308 p. Google Books

3. P. Palmeri et al. Radiative and Auger Decay of K-Vacancy Levels in the Ne, Mg, Si, S, Ar, and Ca Isonuclear Sequences. Astrophys. J. Suppl. Ser. 177(1) (2008) 408. https://doi.org/10.1086/587804

4. D.A. Pantazis, F. Neese. All-electron scalar relativistic basis sets for the 6p elements. Theor. Chem. Acc. 131 (2012) 1292. https://doi.org/10.1007/s00214-012-1292-x

5. J.C. Slater. The Self-consistent Field for Molecules and Solids (Moskva: Mir, 1974) 780 p. (Rus) Google Books

6. Theory of the Inhomogeneous Electron Gas. Ed. by S. Lundqvist, N.H. March (New York and London: Plenum Press, 1983). https://doi.org/10.1007/978-1-4899-0415-7

7. R.G. Parr, W. Yang. Density-Functional Theory of Atoms and Molecules (Oxford: Oxford University Press, 1989). Google Books

8. S. Kotochigova et al. Local-density-functional calculations of the energy of atoms. Phys. Rev. A 55 (1997) 191. https://doi.org/10.1103/PhysRevA.55.191

9. B.-G. Englert, J. Schwinger. Thomas-Fermi revisited: The outer regions of the atom. Phys. Rev. A 26(5) (1982) 2322. https://doi.org/10.1103/PhysRevA.26.2322

10. Electronic and Atomic Collisions. Ed. by G. Watel, P.G. Burke. (North-Holland, Amsterdam, 1978) 201 p. Google Books

11. K. Smith, R.J. Henry, P.G. Burke. Scattering of Electrons by Atomic Systems with Configurations 2pq and 3pq. Phys. Rev. 147(1) (1966) 21. https://doi.org/10.1103/PhysRev.147.21

12. P. Gombas. Die Statistische Theorie des Atoms und Ihre Anwendungen (Wien, New York and London: Springer-Verlag, 1983). https://doi.org/10.1007/978-3-7091-2100-9

13. R.J. Latter. Atomic Energy Levels for the Thomas-Fermi and Thomas-Fermi-Dirac Potential. Phys. Rev. 99(2) (1955) 510. https://doi.org/10.1103/PhysRev.99.510

14. V.Ya. Karpov, G.V. Shpatakovskaya. On the Atomic-Number Similarity of the Binding Energies of Electrons in Filled Shells of Elements of the Periodic Table. Journal of Experimental and Theoretical Physics 124(3) (2017) 369. https://doi.org/10.1134/S1063776117030037

15. L.H. Thomas. The calculation of atomic fields. Mathematical Proceedings of the Cambridge Philosophical Society 23 (1927) 542. https://doi.org/10.1017/S0305004100011683

16. E. Fermi. Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Accad. Naz. Lincei 6 (1927) 602; Z. Phys. 48(1-2) (1928) 73. https://doi.org/10.1007/BF01351576

17. C.G. Darwin. The wave equations of the electron. Proc. Roy. Soc. A 118(780) (1928) 654. https://doi.org/10.1098/rspa.1928.0076

18. V.B. Berestetskii, L.P. Pitaevskii, E.M. Lifshitz. Quantum Electrodynamics (oskva: Fizmatgiz, 1980) 704 p. (Rus) Google Books

19. A.S. Davydov. Quantum Mechanics (oskva: Nauka, 1973) 748 p. (Rus) Google Books

20. T. Tietz. Simple Analytical Eigenfunctions of Electrons in Thomas-Fermi Atoms. Z. Naturforsch. 23a (1968) 191. http://zfn.mpdl.mpg.de/data/Reihe_A/23/ZNA-1968-23a-0191_n.pdf

21. J.A. Bearden, A.F Burr. Reevaluation of X-Ray Atomic Energy Levels. Rev. Mod. Phys. 39(1) (1967) 125. https://doi.org/10.1103/RevModPhys.39.125