Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2019, volume 20, issue 4, pages 375-380.
Section: Nuclear Physics.
Received: 12.08.2019; Accepted: 04.12.2019; Published online: 12.03.2020.
PDF Full text (ua)
https://doi.org/10.15407/jnpae2019.04.375

Deuteron breakup by 40Ña nuclei at 56 MeV energy

O. V. Babak*, V. P. Mikhailyuk

Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine

*Corresponding author. E-mail address: avbabak@gmail.com

Abstract: In the framework of the distorted-wave approximation, an approach for calculating the amplitude of the deuteron-like particle break-up in the field of a heavy target nucleus at over-barrier energies is developed. The proposed approach is based on the approximate solution of the Schrodinger equation and can be used in calculating the amplitudes for other nuclear reactions. A method for accounting the nonzero interaction radius of the deuteron-like particle components has been also developed and the comparison of the calculated and measured deuteron breakup cross sections by 40Ca nuclei is made. It was shown that taking into account the internal structure of the deuteron significantly affects the behavior of the calculated observables.

Keywords: distorted-wave approximation, break-up reactions, interaction potential, over-barrier energies.

References:

1. H. Okamura et al. Mechanism of the forward-angle (d, pn) reaction at intermediate energies. Phys. Rev. C 58 (1998) 2180. https://doi.org/10.1103/PhysRevC.58.2180

2. H. Okamura et al. Strong evidence of the Coulomb breakup of the deuteron at 56 MeV. Phys. Lett. B 325 (1994) 308. https://doi.org/10.1016/0370-2693(94)90016-7

3. Yuen Sim Neoh et al. Microscopic effective reaction theory for deuteron-induced reactions. Phys. Rev. C 94 (2016) 044619. https://doi.org/10.1103/PhysRevC.94.044619

4. A. Nordsieck. Reduction of an integral in the theory of Bremsstrahlung. Phys. Rev. 93 (1954) 785. https://doi.org/10.1103/PhysRev.93.785

5. K.R. Greider, L.R. Dodd. Divergence of the distorted-wave Born series for rearrangement scattering. Phys. Rev. 146 (1966) 671. https://doi.org/10.1103/PhysRev.146.671

6. G. Baur, D. Trautmann. The break-up of the deuteron and stripping to unbound states. Nucl. Phys. A 191 (1972) 321. https://doi.org/10.1016/0375-9474(72)90518-0

7. J. Lang, L. Jarczyk, R. Muller. Deuteron break-up in the field of the nucleus. Nucl. Phys. A 204 (1973) 97. https://doi.org/10.1016/0375-9474(73)90008-0

8. J.A. Tostevin, S. Rugmai, R.C. Johnson. Coulomb dissociation of light nuclei. Phys. Rev. C 57 (1998) 3225. https://doi.org/10.1103/PhysRevC.57.3225

9. Yu.A. Berezhnoy, V.Yu. Korda. Deuteron structure and diffractive deuteron-nucleus interaction. Int. J. Mod. Phys. E 149 (1994) 3. https://doi.org/10.1142/S021830139400005X

10. C.A. Bertulani, L.F. Canto, M.S. Hussein. A coupled-channels study of 11Be Coulomb excitation. Phys. Lett. B 353 (1995) 413. https://doi.org/10.1016/0370-2693(95)00595-C

11. N. Matsuoka. Optical model and folding model potentials for elastic scattering of 56 MeV polarized deuterons. Nucl. Phys. A 455 (1986) 413. https://doi.org/10.1016/0375-9474(86)90315-5

12. R.C. Johnson, P.J.R. Soper. Contribution of deuteron breakup channels to deuteron stripping and elastic scattering. Phys. Rev. C 1 (1970) 976. https://doi.org/10.1103/PhysRevC.1.976

13. F.D. Becchetti, G.W. Greenless. Nucleon-nucleus optical-model parameters, A > 40, E < 50 MeV. Phys. Rev. 182 (1969) 1190. https://doi.org/10.1103/PhysRev.182.1190

14. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonsky. The Quantum Theory of Angular Momentum (Leningrad: Nauka, 1975) 439 p. (Rus) Google books

15. C.M. Vincent, H.T. Fortune. New method for distorted-wave analysis of stripping to unbound states. Phys. Rev. C 2 (1970) 782. https://doi.org/10.1103/PhysRevC.2.782

16. F. Rybicki, N. Austern. Distorted-wave theory of deuteron breakup. Phys. Rev. C 6 (1972) 1525. https://doi.org/10.1103/PhysRevC.6.1525

17. O.V. Babak, V.P. Verbytskyi, O.D. Grygorenko. Deuteron nuclear interaction potential with heavy nuclei in a single folding model. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 14(3) (2013) 247. (Ukr) http://jnpae.kinr.kiev.ua/14.3/Articles_PDF/jnpae-2013-14-0247-Babak.pdf

18. Y. Nishida. Elastic Scattering of Deuterons by Heavy Nuclei. Progr. Theor. Phys. 19 (1958) 389. https://doi.org/10.1143/PTP.19.389