Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2020, volume 21, issue 1, pages 64-74.
Section: Radiobiology and Radioecology.
Received: 16.09.2019; Accepted: 04.12.2019; Published online: 14.05.2020.
PDF Full text (ru)
https://doi.org/10.15407/jnpae2020.01.064

Dynamics of 137Cs uptake from water to Prussian carp (Carassius gibelio)

O. V. Kashparova1,2,*, H.-C. Teien2, S. E. Levchuk1, V. P. Protsak1, K. D. Korepanova1,3, B. Salbu2, I. I. Ibatullin1, V. O. Kashparov1,2

1Ukrainian Institute of Agricultural Radiology, National University of Life and Environment Sciences of Ukraine, Kyiv, Ukraine
2Center for Environmental Radioactivity, Norwegian University of Life Sciences, Ås, Norway
3State Specialized Enterprise “Ecocenter”, Chornobyl, Ukraine


*Corresponding author. E-mail address: elena.kashparova@gmail.com

Abstract: The rate constants of 137Cs uptake in Prussian carp (Carassius gibelio) from the water with a potassium content of 2 mg·L-1 at T = 5 °C without feeding (kw = 0.045 ± 0.001 day-1), at T = 12 °C with «clean» feeding (0.046 ± 0.002 day-1) and at T = 22 °C with «clean» feeding (0.062 ± 0.006 day-1) were obtained in a series of aquarium experiments. The results showed that rates of 137Cs uptake in fish from water without and with feeding did not significantly differ at different temperatures of water (T = 5 - 22 °C) and were two orders of magnitude lower than the rate constants of 137Cs uptake in Prussian carp with feed in Chornobyl exclusion zone (11.4 ± 2.6 day-1). This makes it possible to obtain products with 137Cs content below the permissible level (150 Bq·kg-1) while providing fish with clean feeds even in the most radioactively contaminated reservoirs of the exclusion zone. A decrease in the potassium content in water from 2 to 0.2 mg·L-1 (no feeding, T = 5 ± 1 °C) resulted in an increase in the rate of 137Cs uptake into the fish from the water by 1.6 times. An increase in the potassium content in water by 10 times up to 20 mg L-1 resulted just in a decrease of 20 % in the rate. The levels of 137Cs activity concentration in fish in contaminated water at temperatures below 10 °C will be two orders of magnitude lower compared to radioactive contamination of water in the summer season (T = 22 °C). This is extremely important for the correct prediction of fish contamination in the autumn-winter-spring period at a water temperature of less than 10 °C when some fish stop feeding.

Keywords: 137Cs, radioecology, Carassius gibelio, the Chornobyl accident, water ecosystems, radioactive contamination, permissible levels, concentration factor, rate constant of uptake, rate constant of excretion.

References:

1. A.I. Kryshev. Model reconstruction of 90Sr concentrations in fish from 16 Ural lakes contaminated by the Kyshtym accident of 1957. Journal of Environmental Radioactivity 64 (2003) 67. https://doi.org/10.1016/S0265-931X(02)00059-0

2. I. Outola, M. Rask. Effect of liming on the behaviour of 90Sr and 137Cs in a lake ecosystem. Journal of Environmental Radioactivity 102(8) (2011) 719. https://doi.org/10.1016/j.jenvrad.2011.04.011

3. J.E. Pinder et al. Cesium accumulation by fish following acute input to lakes: a comparison of experimental and Chernobyl-impacted systems. Journal of Environmental Radioactivity 100 (2009) 456. https://doi.org/10.1016/j.jenvrad.2009.03.004

4. J.T. Smith, N.A. Beresford. Chernobyl: Catastrophe and Consequences (UK, Praxis Publishing Ltd, Chichester, 2005) 309 p. Google books

5. V. Kashparov et al. Spatial datasets of radionuclide contamination in the Ukrainian Chernobyl Exclusion Zone. Earth System Science Data (ESSD) 10 (2018) 339. https://doi.org/10.5194/essd-10-339-2018

6. V. Kashparov et al. Environmental behaviour of radioactive particles from Chernobyl. Journal of Environmental Radioactivity 208-209 (2019) 106025. https://doi.org/10.1016/j.jenvrad.2019.106025

7. B. Salbu et al. Challenges associated with the behaviour of radioactive particles in the environment. Journal of Environmental Radioactivity 186 (2018) 101. https://doi.org/10.1016/j.jenvrad.2017.09.001

8. T. Wada et al. Radiological impact of the nuclear power plant accident on freshwater fish in Fukushima: An overview of monitoring results. Journal of Environmental Radioactivity 151 (2016) 144. http://dx.doi.org/10.1016/j.jenvrad.2015.09.017

9. T. Wada et al. Strong contrast of cesium radioactivity between marine and freshwater fish in Fukushima. Journal of Environmental Radioactivity 204 (2019) 132. https://doi.org/10.1016/j.jenvrad.2019.04.006

10. Environmental Consequences of the Chernobyl Accident and their Remediation. Twenty Years of Experience. Report of the Chernobyl Forum Expert Group "Environment" (Vienna, IAEA, 2006) 166 p. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1239_web.pdf

11. Yu.V. Khomutinin, V.A. Kashparov, A.V. Kuzmenko. Dependence of 137Cs and 90Sr accumulation rates by fish on the potassium and calcium content in freshwater water. Radiation Biology. Radioecology 51(3) (2011) 374. (Rus)

12. M. Balonov et al. Harmonization of standards for permissible radionuclide activity concentrations in foodstuffs in the long term after the Chernobyl accident. Journal of Radiological Protection 38 (2018) 854. https://doi.org/10.1088/1361-6498/aabe34

13. N. Fuller et al. Does Chernobyl-derived radiation impact the developmental stability of Asellus aquaticus 30 years on? Sci. Total Environ. 576 (2017) 242. https://doi.org/10.1016/j.scitotenv.2016.10.097

14. I.I. Kryshev, T.G. Sazykina. Assessment of radiation doses to aquatic organisms in the Chernobyl contaminated area. Journal of Environmental Radioactivity 28 (1995) 91. https://doi.org/10.1016/0265-931X(94)00043-V

15. A.I. Kryshev, T.G. Sazykina, Comparative analysis of doses to aquatic biota in water bodies impacted by radioactive contamination. Journal of Environmental Radioactivity 108 (2012) 9. https://doi.org/10.1016/j.jenvrad.2011.07.013

16. E. Kashparova et al. A dose rate causes no fluctuating asymmetry indexes changes in silver birch (Betula pendula (L.) Roth.) leaves and Scots pine (Pinus sylvestris L.) needles in the Chernobyl Exclusion Zone. Journal of Environmental Radioactivity 211 (2020) 105731. https://doi.org/10.1016/j.jenvrad.2018.05.015

17. A.Ye. Kaglyan et al. Fish of the Chernobyl exclusion zone: modern levels of radionuclide contamination and radiation doses. Hydrobiological Journal 55 (2019) 81. https://doi.org/10.1615/HydrobJ.v55.i5.80

18. Environmental Protection: The Concept and Use of Reference Animals and Plants. ICRP Publication 108. Ann. ICRP 38(4-6) (2008) 242 p. https://doi.org/10.1016/j.icrp.2009.04.001

19. E. Dagher et al. Establishing a database of radionuclide transfer parameters for freshwater wildlife. Journal of Environmental Radioactivity 126 (2012) 299. https://doi.org/10.1016/j.jenvrad.2012.07.014

20. L. Konovalenko et al. Evaluation of factors influencing accumulation of stable Sr and Cs in lake and coastal fish. Journal of Environmental Radioactivity 160 (2016) 64. https://doi.org/10.1016/j.jenvrad.2016.04.022

21. S.C. Sheppard, Review of "Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments". Journal of Environmental Radioactivity 102 (2010) 217. https://doi.org/10.1016/j.jenvrad.2010.10.004

22. Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments. IAEA-TECDOC-1616 (Vienna, IAEA, 2009) 622 p. https://www-pub.iaea.org/MTCD/Publications/PDF/te_1616_web.pdf

23. Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Fresh-Water Environments. IAEA-TRS-472 (Vienna, IAEA, 2010) 194 p. IAEA-TRS-472

24. S. Fesenko et al. Radionuclide transfer to freshwater biota species: review of Russian language studies. Journal of Environmental Radioactivity 102 (2011) 8. https://doi.org/10.1016/j.jenvrad.2010.09.006

25. T. Yankovich et al. Establishing a database of radionuclide transfer parameters for freshwater wildlife. Journal of Environmental Radioactivity 126 (2013) 299. https://doi.org/10.1016/j.jenvrad.2012.07.014

26. A.E. Kaglyan et al. Radionuclides in the indigenous fish species of the Chernobyl Exclusion Zone. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 13(3) (2012) 306. (Rus) http://jnpae.kinr.kiev.ua/13.3/Articles_PDF/jnpae-2012-13-0306-Kaglyan.pdf

27. N.A. Beresford et al. A new approach to predicting environmental transfer of radionuclides to wildlife: A demonstration for freshwater fish and caesium. Sci. Total Environ. 463-464 (2013) 284. https://doi.org/10.1016/j.scitotenv.2013.06.013

28. On approval of the State Hygiene Standards "Permissible levels of 137Cs and 90Sr radionuclides in food and drinking water". Ministry of Health of Ukraine. Order No. 256 of 3 May 2006. (Ukr) https://zakon.rada.gov.ua/laws/show/z0845-06

29. A. Broberg, E. Andersson. Distribution and circulation of Cs-137 in lake ecosystems. In: The Chernobyl Fallout in Sweden. Ed. L. Moberg (The Swedish Radiation Protection Institute, 1991) p. 151.

30. J.T. Smith et al. Uptake and elimination of radiocaesium in fish and the “size effect”. Journal of Environmental Radioactivity 62 (2002) 145. https://doi.org/10.1016/S0265-931X(01)00157-6

31. N.A. Nenashev et al. Accumulation of 137Cs by the ichthyofauna of various reservoirs of PGREZ. Ecosystems and radiation: Aspects of existence and development. Sbornik Nauchnykh Trudov dedicated to the 25th anniversary of the Polessky State Radiation and Ecological Reserve. Ed. by Yu. I. Bondar (Minsk: Belarusian Branch of the Russian-Belarusian Information Center, Republican Scientific Research Unitary Enterprise “Institute of Radiology”, 2013) 353 p. (Rus)

32. Yu.V. Khomutinin, V.O. Kashparov. Optimization of fish sampling procedure for evaluating the specific activity of 137Cs, 90Sr and accumulation coefficients. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 17(2) (2016) 189. (Rus) https://doi.org/10.15407/jnpae2016.02.189

33. A.G. Paculo. The role of water and feed in the intake of 137Cs in fish. Radiologiya Vodnykh Organizmov 2 (1973) 136. (Rus)

34. M.E. Haque. Developing a food web-based transfer factor of radiocesium for fish, whitespotted char (Salvelinus leucomaenis) in headwater streams. Journal of Environmental Radioactivity 172 (2017) 191. https://doi.org/10.1016/j.jenvrad.2017.02.020

35. J.T. Smith. Modelling the dispersion of radionuclides following short duration releases to rivers Part 2. Uptake by fish. Sci. Total Environ. 368 (2006) 502. https://doi.org/10.1016/j.scitotenv.2006.03.011

36. Yu.V. Movchan, A.I. Smirnov. Fauna of Ukraine. Fishes. Vol. 2. Issue 2 (Kyiv: Naukova Dumka, 1983) 360 p. (Ukr)

37. O. V. Kashparova et al. Dynamics of the 137Cs excretion from Prussian carp (Carassius gibelio) at different water temperatures. Yaderna Fizyka ta Energetyka (Nucl. Phys. At. Energy) 20(4) (2019) 411. (Rus) https://doi.org/10.15407/jnpae2019.04.411