Nuclear Physics and Atomic Energy

ядерна ф≥зика та енергетика
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English, Russian
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2016, volume 17, issue 1, pages 92-97.
Section: Engineering and Methods of Experiment.
Received: 03.12.2015; Accepted: 11.04.2016; Published online: 02.06.2016.
PDF Full text (en)
https://doi.org/

Shaping and monitoring of the mini-beam structures for the spatially fractionated hadron radiation therapy

I. Momot1, O. Kovalchuk1,*, O. Okhrimenko1, Y. Prezado2, V. Pugatch1

1 Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2 Laboratoire d'Imagerie et Modelisation en Neurobiologie et Cancerologie (IMNC, CNRS), Orsay, France


*Corresponding author. E-mail address: lexxkov@kinr.kiev.uas

Abstract: Design of collimators and their effectiveness for the purposes of the fractionated mini-beam hadron radiation therapy were evaluated by Monte Carlo simulations. The calculations have been performed for proton, carbon and oxygen ion beams at the energies relevant for medical applications. Micropixel metal and hybrid detectors were tested for measuring charged particles intensity distribution in multi-beam structures shaped by slit or matrix collimators exploring low energy proton beam at the Tandem generator (INR NASU, Kyiv). The results obtained illustrate reliable performance of the designed collimators as well as hybrid and metal microdetectors for measuring and imaging in real time the proton intensity distribution over mini-beam structures.

Keywords: spatially fractionated hadron radiation therapy, beam collimators, Monte Carlo simulation of dose distribution, monitoring of spatial distribution of the intensity of the charged particle beams, micropixel metal and hybrid detectors.

References:

1. R. Wilson. Radiological use of fast protons. Radiology 47 (1946) 487. https://doi.org/10.1148/47.5.487

2. G. Kraft. Tumor therapy with heavy charged particles. Prog. Part. Nucl. Phys. 45 (2000) S473. https://doi.org/10.1016/S0146-6410(00)00112-5

3. D. Schardt, T. Elsasser, D. Schulz-Ertner. Heavy-ion tumor therapy: Physical and radiobiological benefits. Rev. Mod. Phys. 82 (2010) 383. https://doi.org/10.1103/RevModPhys.82.383

4. D. Slatkin, P. Spanne, F.A. Dilmanian et al. Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler. Proc. Nat. Acad. Sci. U.S.A. 92 (1995) 8783. http://www.pnas.org/content/92/19/8783.full.pdf

5. J.A. Laissue, H. Blattmann, M. di Michiel et al. The weanling piglet cerebellum: a surrogate for tolerance to MRT (Microbeam Radiation Therapy) in pediatric neuro-oncology. SPIE 4508 (2001) 65. https://doi.org/10.1117/12.450774

6. F.A. Dilmanian, T.M. Button, G. Le Duc et al. Response of rat intracranial 9L gliosarcoma to microbeam radiation therapy. Neuro-Oncology 4 (2002) 26. https://doi.org/10.1093/neuonc/4.1.26

7. Y. Prezado, G. Fois. Proton-minibeam radiation therapy: a proof of concept. Med. Phys. 40 (2013) 031712.

8. I. Martinez-Rovira, G. Fois, Y. Prezado. Dosimetric evaluation of new approaches in GRID therapy using nonconventional radiation sources. Med. Phys. 42 (2015) 685.

9. S. Devic, J. Seuntjens, E. Sham et al. Precise radiochromic film dosimetry using flat-bed document scanner. Med. Phys. 32 (2005) 2245.

10. A. Niroomand-Rad, C.R. Blackwell, B.M. Coursey et al. Radiochromic film dosimetry: Recommendations of AAPM Radiation Therapy Committee Task Group 55. Med. Phys. 25 (1998) 2093.

11. M. Martisikova, O. Jakel. Dosimetric properties of Gafchromic EBT films in medical carbon beams. Phys. Med. Biol. 55 (2010) 5557. https://doi.org/10.1088/0031-9155/55/18/019

12. Z. Vykydal, J. Jakubek, S. Pospisil. USB interface for Medipix2 matrix device enabling energy and position-sensitive detection of heavy charged particles. Nucl. Instrum. Methods. Phys. Res. A 563 (2006) 112. https://doi.org/10.1016/j.nima.2006.01.114

13. M.L.F. Lerch, A. Cullen, A.M. Baloglow et al. Dosimetry of intensive, pulsed synchrotron X-ray microbeams. IEEE Nuclear & Space Radiation Effects Conference (20 - 24 July, 2009, Quebeck, Canada) p. 23.

14. V. Pugatch, M. Campbell, A. Chaus et al. Metal micro-detector TimePix imaging synchrotron radiation beams at the ESRF Bio-Medical Beamline ID17. Nucl. Instrum. Methods. Phys. Res. A 682 (2012) 8. https://doi.org/10.1016/j.nima.2012.03.049

15. N. Matsufuji, A. Fukumura, M. Komori et al. Influence of fragment reaction of relativistic heavy charged particles on heavy-ion radiotherapy. Phys. Med. Biol. 48 (2003) 1605. https://doi.org/10.1088/0031-9155/48/11/309

16. B. Braunn, M. Labalme, G. Ban et al. Nuclear reaction measurements of 95 MeV/u 12C interactions on PMMA for hadrontherapy. Nucl. Instrum. Methods. Phys. Res. B 269 (2011) 2676. https://doi.org/10.1016/j.nimb.2011.08.010

17. K. Gunzert-Marx, H. Iwase, D. Schardt, R.S. Simon. Secondary beam fragments produced by 200 MeV/n 12C ions in water and their dose contributions in carbon ion radiotherapy. New Journal of Physics. 10 (2008) 075003. https://doi.org/10.1088/1367-2630/10/7/075003

18. L. Opalka, C. Granja, B. Hartmann et al. Linear energy transfer and track pattern recognition of secondary radiation generated in hadron therapy beam in a PMMA target. JINST 8 (2013) C02047. https://doi.org/10.1088/1748-0221/8/02/C02047

19. http://www.opengatecollaboration.org/

20. E. Seravalli, C. Robert, J. Bauer et al. Monte Carlo calculations of positron emitter yields in proton radiotherapy. Phys. Med. Biol. 57 (2012) 1659. https://doi.org/10.1088/0031-9155/57/6/1659

21. L. Grevillot, T. Frisson, N. Zahra et al. Optimization of GEANT4 settings for proton pencil beam scanning simulations using GATE. Nucl. Instrum. Methods Phys. Res. B 268 (2010) 3295. https://doi.org/10.1016/j.nimb.2010.07.011