Nuclear Physics and Atomic Energy

ßäåðíà ô³çèêà òà åíåðãåòèêà
Nuclear Physics and Atomic Energy

  ISSN: 1818-331X (Print), 2074-0565 (Online)
  Publisher: Institute for Nuclear Research of the National Academy of Sciences of Ukraine
  Languages: Ukrainian, English
  Periodicity: 4 times per year

  Open access peer reviewed journal


 Home page   About 
Nucl. Phys. At. Energy 2024, volume 25, issue 1, pages 36-42.
Section: Nuclear Physics.
Received: 23.11.2023; Accepted: 28.02.2024; Published online: 27.03.2024.
PDF Full text (en)
https://doi.org/10.15407/jnpae2024.01.036

Comparative study between IVBM and IBM-2 models to calculate the energy levels for 162-16870Yb isotopes

D. M. Nasef*, E. T. Ellafi, S. M. El-Kadi

Department of Physics, Faculty of Science, University of Tripoli, Tripoli, Libya

*Corresponding author. E-mail address: dalenda_nasef@yahoo.com

Abstract: This study uses the interaction vector boson model (IVBM) to identify negative parity band (NPB) energy levels in the 162-16870Yb isotopes series. Simultaneously, the interacting boson model-2 (IBM-2) and the IVBM model were used to determine the ground state band (GSB) energy levels of the same isotopes. The ratios RI/2 and R(I+2)/I are calculated and E-GOS (E-gamma over spin) curves are plotted to determine the properties of these nuclei in the GSB. The isotopes 16270Yb, 16470Yb, and 166-16870Yb have different symmetries. Studies have shown that the IVBM model is more consistent with experimental results than the IBM-2 model, especially at high energy levels. This study provides a valuable comparison of results from different models, improving our understanding of the energy levels and properties of these isotopes.

Keywords: E-GOS test, interacting boson model-2, interaction vector boson model, ratio test, ytterbium isotopes.

References:

1. A.I. Georgieva et al. Description of mixed-mode dynamics within the symplectic extension of the Interacting Vector Boson Model. Phys. Part. Nuclei 40 (2009) 461. https://doi.org/10.1134/S1063779609040029

2. M.G. Mayer. On closed shells in nuclei II. Phys Rev. 75 (1949) 1969. https://doi.org/10.1103/PhysRev.75.1969

3. O. Haxel et al. On the "magic numbers" in nuclear structure. Phys. Rev. 75 (1949) 1766. https://doi.org/10.1103/PhysRev.75.1766.2

4. W. Greiner, J.A. Maruhn. Nuclear Models (Berlin, Heidelberg, Springer-Verlag, 1996) 376 p. https://doi.org/10.1007/978-3-642-60970-1

5. P. Ring, P. Schuck. The Nuclear Many-Body Problem (Berlin, Springer-Verlag, 1980) 708 p. https://link.springer.com/book/9783540212065

6. K. Nomura. Interacting Boson Model from Energy Density Functionals (Tokyo, University of Tokyo, 2013) 188 p. https://doi.org/10.1007/978-4-431-54234-6

7. D.M. Nasef et al. The study of some nuclear properties of even-even 114-120Cd isotopes using interacting boson model-1. Sebha University Journal of Pure & Applied Sciences 20 (2021) 51. https://doi.org/10.51984/jopas.v20i4.1672

8. N.S. Shaftry et al. Study of some properties of even-even 162-156Er using Interacting Boson Model-2 (IBM-2). The Libyan Journal of Science 24 (2021) 89. (Arab) https://uot.edu.ly/journals/index.php/ljs/article/view/98/38

9. D.M. Nasef et al. Structural evolution of 146–158Nd isotopes using IBM-2 Hamiltonian. Sebha University Journal of Pure & Applied Sciences 20 (2021) 171. https://doi.org/10.51984/jopas.v20i2.1597

10. H.G. Ganev, V.P. Garistov, A.I. Georgieva. Description of the ground and octupole bands in the symplectic extension of the interacting vector boson model. Phys. Rev. C 69 (2004) 014305. https://doi.org/10.1103/PhysRevC.69.014305

11. S.N. Abood, A.K.S. Abdul Kader, L.A. Najim. Nuclear structure of the germanium nuclei in the interacting boson model (IBM). Adv. Appl. Sci. Res. 4 (2013) 63. https://www.primescholars.com/articles/nuclear-structure-of-the-germanium-nuclei-in-the-interactingboson-model-ibm.pdf

12. R.M. Asherova et al. Interacting vector boson model and of other versions of interacting boson approximations. J. Phys. G 19 (1993) 1887. https://doi.org/10.1088/0954-3899/19/11/016

13. A.M. Khalaf et al. Investigation of energy staggering effects in Thorium isotopes in framework of interacting vector boson model. Nucl. Phys. A 988 (2019) 1. https://doi.org/10.1016/j.nuclphysa.2019.05.007

14. M.A. Al-Jubbori et al. Critical point of the 152Sm, 154Gd, and 156Dy isotones. Phys. Atom. Nucl. 82 (2019) 201. https://doi.org/10.1134/S1063778819030049

15. H.H. Kassim et al. Nuclear Structure and Energy Levels of 158Er, 160Yb and 162Hf Isotones. IOP Conf. Ser.: Mater. Sci. Eng. 928 (2020) 072064. https://doi.org/10.1088/1757-899X/928/7/072064

16. M.A. Al-Jubbori. Investigation of energy levels and electromagnetic transitions for a Yb-Pt nuclei with N = 108 using IBM, IVBM, and BMM. Ukr. J. Phys. 62 (2017) 936. https://doi.org/10.15407/ujpe62.11.0936

17. I. Hossain et al. Nuclear gamma-soft character in 128Ba. Eur. J. Appl. Phys. 3 (2021) 16. https://doi.org/10.24018/ejphysics.2021.3.3.54

18. F. Iachello, A. Arima. The Interacting Boson Model (Cambridge, Cambridge University Press, 1987) 249 p. https://doi.org/10.1017/CBO9780511895517

19. A. Arima, F. Iachello. Collective nuclear states as representations of a SU(6) group. Phys. Rev. Lett. 35 (1975) 1069. https://doi.org/10.1103/PhysRevLett.35.1069

20. T. Otsuka et al. Shell model description of interacting bosons. Phys. Lett. B 76 (1978) 139. https://doi.org/10.1016/0370-2693(78)90260-5

21. P. Van Isacker, G. Puddu. The Ru and Pd isotopes in the proton-neutron interacting boson model. Nucl. Phys. A 384 (1980) 125. https://doi.org/10.1016/0375-9474(80)90549-7

22. L.A. Najam, A.J. Mohaisen, S.N. Abood. Electric monopole transitions in Nd nuclei within IBM-2. Egypt. J. Phys. (2020). https://doi.org/10.21608/ejphysics.2020.41849.1052

23. M. Sakai. Quasi-bands in even-even nuclei. At. Data Nucl. Data Tables 31 (1984) 399. https://doi.org/10.1016/0092-640X(84)90010-X

24. N. Minkov, S. Drenska. Quadrupole-octupole collectivity and fine structure of nuclear rotational spectra. Prog. Theor. Phys. Supp. 146 (2002) 597. https://doi.org/10.1143/PTPS.146.597

25. P.H. Regan. Signature for vibrational to rotational evolution along the yrast line. Phys. Rev. Lett. 90 (2003) 152502. https://doi.org/10.1103/PhysRevLett.90.152502

26. T. Otsuka, N. Yoshida. The IBM-2 Computer Program NPBOS (Tokyo, University of Tokyo, 1985). https://inis.iaea.org/search/search.aspx?orig_q=RN:17033326

27. T. Otsuka, A. Arima, F. Iachello. Nuclear shell model and interacting bosons. Nucl. Phys. A 309 (1978) 1. https://doi.org/10.1016/0375-9474(78)90532-8

28. H.N. Hady, M.K. Muttalb. Investigation of transition symmetry shapes of 160-168Yb nuclei using IBM. Iraqi J. of Sci. 62 (2021) 1135. https://doi.org/10.24996/ijs.2021.62.4.10

29. A.M. Ali, Y. Qasim, M.M. Yousuf. Study of nuclear structure of even-even Dy isotopes. J. Educ. Sci. 30 (2021) 94. https://doi.org/10.33899/edusj.2021.129809.1151

30. S.H. Ibrahem, M.K. Al-Janaby. Description and study of energy-levels and the deformation for even-even ytterbium isotopes. AIP Conf. Proc. 2591 (2023) 040016. https://doi.org/10.1063/5.0119842

31. A. Zyriliou et al. A study of some aspects of the nuclear structure in the even-even Yb isotopes. Eur. Phys. J. Plus 137 (2022) 352. https://doi.org/10.1140/epjp/s13360-022-02414-2